

STAR Measurement of the W-boson Single-Spin Asymmetry in Longitudinally Polarized Proton Collisions

Jinlong Zhang
Nuclear Science Division, LBNL

Motivation

$$= \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$
(Jaffe-Manohar, 1990)

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx$$

- ☐ Proton spin is carried by quark and gluon spins, and orbital momentum
- ☐ Total quark and anti-quark spin contribution has been determined from inclusive DIS measurements
- □ Polarized *W* measurement at RHIC is a unique way to delineate the flavor structure

Polarized Parton Distribution Function of parton with flavor f:

Why W?

$$u + \bar{d} \rightarrow W^+ \rightarrow e^+ + \nu_e$$

$$d + \bar{u} \rightarrow W^- \rightarrow e^- + \bar{\nu}_e$$

Clean Spin and Flavor separation!

- ☐ W only couples with left-handed quarks and right-handed antiquarks
- ☐ Leptonic decay is calculable and free of fragmentation uncertainties
- \Box The high scale is set by the W mass, $Q \sim M_W$

$$A_{L} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

$$A_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})} \approx \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, x_{1} \gg x_{2}, & \text{forward} \\ \frac{\Delta \bar{d}(x_{1})}{\bar{d}(x_{1})}, x_{1} \ll x_{2}, & \text{backward} \end{cases}$$

$$A_{L}^{W^{-}} \propto \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})} \approx \begin{cases} -\frac{\Delta d(x_{1})}{\bar{d}(x_{1})}, x_{1} \gg x_{2}, & \text{forward} \\ \frac{\Delta \bar{u}(x_{1})}{\bar{u}(x_{1})}, x_{1} \ll x_{2}, & \text{backward} \end{cases}$$

STAR Experiment and Data

Data Sample of STAR Longitudinal pp collisions at $\sqrt{s} = 500$ GeV:

■ 330 pb⁻¹ with 55% beam polarization, from 2011-2013

How is the W boson leptonic decay reconstructed?

Based on the kinematic and topological differences

- \square W leptonic decay contains an isolated high p_T electron opposite to large missing energy carried away by the neutrino
- ☐ Dominant QCD backgrounds are di-jet or multi-jet events

Fig 1: Candidate electron transverse energy $E_T^{2\times2}$ distributions with selection criteria application

Results

Fig 2: W A_L results as a function of lepton pseudo-rapidity from STAR 2011+2012 (black) and preliminary 2013 (red) with comparison to PHENIX W/Z A_L results and the theoretical predictions.

Fig 3: Impacts on light sea quark helicity distributions with STAR 2012 W A_L results and uncertainty projection from STAR 2013 W A_L results.

- ☐ STAR W A_L data are the most precise to date
- \Box They favor $\varDelta \bar{u}> \varDelta \bar{d}$, opposite to the unpolarized light sea

